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The three-dimensional stress-strain state of an inhomogeneous thin truncated hollow cone is studied 

by the method of direct asymptotic integration of the equations of the theory of elasticity (11. Assuming 

that the load is sufficiently smooth, inhomogeneous solutions are constructed, which enable the load to 

be removed from the lateral surface of the cone. Homogeneous solutions are then constructed. 

Asymptotic expansions of homogeneous solutions are obtained, which enable the stress-strain state to 

be computed under various boundary conditions on the ends of the cone. The nature of the stress- 

strain state is clarified by a qualitative analysis. It is shown that, as in the homogeneous case [2], the 

stress-strain state consists of three types: the internal stress state, the simple boundary effect, and the 

boundary layer. 

1. CONSIDER the axisymmetric problem of the theory of elasticity for an inhomogeneous trun- 
cated hollow cone with two conical and two spherical boundaries. We will consider the cone in 
a spherical system of coordinates r, 8, cp, where 

We introduce new dimensionless variables 11 and p 

where 0, = (0, +8,)/2 is the angle at the vertex of the middle surface of the cone and 
E = (0, -8,)/2 is a small parameter characterizing the thickness r, = (&l/2 of the cone. Note 
that q E [-1, l] and e,, ~10, ~/2[. 

We assume that the Lam6 parameters G = G(q) and h= h(r\) are arbitrary positive 
piecewise-continuous functions of 11. 

The equations of equilibrium in terms of displacements have the form 

~~ = (L, + Cal& + E2a&)u = 0 (1.1) 

Here u =(u,, ug)‘, u,, and u, are the components of the displacement vector, and L,, are 
matrix-valued differential operators of the form 
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aGa + EGctg(eO + f3j)a - DICES 
-EaG-Exa- 

-(G + K)E~ ctg(f& + eq) 
aKa + (2&G + &ah) X 

d(K + h) + 2EGa X Ctg( 8, + &lj) - KE2 X 

xcsc2(8, +&q) 

3ci)+aG+~(G+X)ctg(O,, +&q) 

a=+, a;=p 2 32 2, ~=zG+h 
ap 

We will assume that the following boundary conditions are specified on the lateral surfaces of 
the cone 

u q&l = MuI,=*, = q*w I (1.2) 

Here 

a = (~,,JJ,h s*(P) = (ff(PMf(P)) 

M=(M~ +~a,wm 

Ga -EG 

Mo = (K+h)& Ka + Eh Ctg(eo + II &Ij) 

The loads f*(p) and h*(p) given on the lateral surfaces are assumed to be sufficiently smooth 
functions. 

2. Consider the construction of particular solutions of (1.1) that satisfy the boundary 
conditions (1.2), i.e. inhomogeneous solutions. 

Assuming that E is small enough and that the load on the boundaries of the cone is of order 
unity with respect to E, we will use the asymptotic method of [l] to construct inhomogeneous 
solutions. 

We will seek a solution of problem (l.l), (1.2) in the form 

u=E-‘(UO+EU, +E2u2+...), uj =(u,i,bi)T, i=o,1,2 ,... (2.1) 

The substitution of (2.1) into (1.1) and (1.2) leads to a scheme, which, after integration with 
respect to q yields relations for the coefficients of the expansion (2.1), that enable asymptotic 
formulae to be obtained for the stresses. The analysis of the stress state indicates that the 
stresses o, and o, are of order E-* with respect to E, while o, and cr, are of order unity. 

3. We shall now construct homogeneous solutions. To this end, we set q* = 0 in (1.2). 
Finding the solutions of the homogeneous systems in the form 

U(P.9) = p%q)9 Ml) = (Q.b) 
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after separation of variables, we arrive at the following non-self-adjoint spectral problem 

(r, +e(z-J$)(& -&)+c*(Z-M*LZ)u=O 

(MO + e(z - )/zM )ul,=*, = 0 
(3.1) 

The homogeneous solutions corresponding to the first iteration can be obtained from the 
formulae for the inhomogeneous solutions by setting q* = 0. We have 

$‘=(4p) ‘Co(-2goG~‘ctg80+~[8q-8G,G,-‘+2g,G,+ 

xcsc*8, +4G,-‘ctg*f& ( ;ZGtc-‘(G+5)]~~-‘duhl- 
-1 0 

- ;hc-’ ]2G(G + ~)~-~dxdq 
1 

+ goG;* ctg* 610 x 
-1 -1 

x i2M’ G&X!IJ - gt 1 + 0(e2N 
-I -I 

4” = (2p)-‘Co(2+e qgoG;’ - ~2hx-%x ctg8, + O(E*)) 1 
gh = !4Gr-‘(G + X)$dq. Gk = iGllkhl 

-1 

The eigenvalues corresponding to these solutions are z, = -l/2. 
We will now construct the second iteration. We will seek a solution of the form 

J2’(rl) = EK (azo (11) + eKu*, (11)+ . . . ) 

6’*‘(q) = 6u,(‘1)+e%2,(lQ+... 

r=& -H(a, +&a,+...) 

After some reduction, we obtain 

u(2) = 
v -aojq +.a$g;'(a~jgl -to ctge,)+G+fl(g - 

-U0jC$ j In p) + ai;g,’ ((go - to / 2) ctg 8, - 3aijg, / 2) + 

+(a,2 j& - lo Ctg 80 )&‘U&X,j ln p] + O(E)) tXp(E-‘CQj h p) 

U$’ = 
( 
1 + E&l j In p+ O(e) exp(e-xaoi lnp) 

I 

tk = j2G~~-‘qkd~ 
-1 

We obtain the following biquadratic equation for aoj 

(3.2) 

(3.3) 

(3.4) 

(gog2 - gf >dj +2(&to - got, ) ctg 80Uij + (gi - t,‘) ctg* 8, = 0 
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It follows from (3.4) that ozf’ and og are of order unity with respect to E, while o’,“! is of 
order E”’ and a(‘) is of order E. 

Let us now cor%ruct the third iteration. We will seek a solution of (3.1) in the form 

z = &-I& +&PI+...) (3.5) 

u3k = @3k,b,kf, k=0,1,2 ,... 

Substituting (3.5) into (3.1), we obtain a spectral problem for the initial terms of the 
expansion, which describes the potential solution for a plate of non-uniform thickness, which 
was investigated in [3]. 

At the next stage of asymptotic integration we obtain a boundary-value problem for ujI and 
P 1' 

Thus, the solutions corresponding to the third iteration have the form 

(3.6) @ = [ pOi%vi(~) - P2vk (“rl) + O(E)]exp@-'~Ok In p) 

~~~'=[-~~~(po~~)'-2~~~p~~~+~~~(p2~k)~+~(E)]e~P(E-1~Oklnp) 

p. =~/(4G(G+hh p1 =1/(2G), p2 =hI(4G(G+h)) 

Here wlr(q) is the solution of Papkovich’s generalized spectral problem for the inhomo- 
geneous case [3,4]. 

4. On the basis of the above analysis we shall determine the form of the solutions obtained. 
We will study the relationship between the homogeneous solutions and the principal stress 

vector P acting over the cross-section r = const. We have 

P=2*rZe (o,cose_a,,sin8)sin8d0 f (4.1) 
@I 

We represent the displacements in the form 

u, = u (1) + , &Q-K a,@,), u, = 4” + 5 c,$‘-Xb,(~) 
k=l k=l 

(the displacements defined by the second and third groups of solutions are included). 
For the stresses we find that 

(4.2) 

Q,(q) = (zk - x)Ka, + k(2a, + E-lb; + b, Ctg(8, + Elj)), 

T,(q) = G(E-‘u; + zk -x)6,) (k = 1,2,3....) 

The terms cr$) and o$ in (4.3) correspond to the eigenvalues z,, = -l/ 2. 
Substituting (4.3) into (4.1), we get 
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We shall prove that o, = 0 for all k = 1, 2, . . . . To this end, we consider the following 
boundary-value problem 

(4.4) 

A necessary condition for the first problem of the theory of elasticity to be solvable is that 
the principal vector and principal torque of all external forces should both vanish [5]. 

In the case under consideration the projection of the principal vector (4.4) of external forces 
on to the axis of symmetry 8 = 0 yields 

pk = (p2 
‘k+x - p, “H),, = 0 

This latter equality is possible only if o, = 0. Finally, we get 

P = 2xr,2&c,o, 

for the principal vector. 
The stress state corresponding to the second and third groups of solutions is self-balanced 

on each cross-section r = const. 
The solution (3.2) corresponding to the first asymptotic process defines the inner stress- 

strain state of the shell. The initial terms of its expansion in E define the torque-free stress state. 
The stress state corresponding to (3.4) represents the boundary effects in the applied theory of 
shells. The initial terms of the expansion of the solution (3.4) in E together with the leading 
terms of (3.2) and (2.1) can be regarded as the solutions according to the Kirchhoff-Love 
theory. The third asymptotic process is defined by the solutions (3.6), which have a boundary- 
layer form. The leading terms of (3.6) are fully equivalent to the St Venant effect for an 
inhomogeneous plate [3,4]. 

5. Consider the problem of removing the stresses from the end surfaces of the shell. We 
assume that the stresses 

(5.1) 

are given on the spherical part of the boundary. Here f,,(@ and f,,(@ are sufficiently smooth 
functions satisfying the conditions of equilibrium. 

As has been demonstrated, the non-self-balanced part of the load (5.1) can be removed using 
the penetrating solution (3.2), the relationship between C,, and the principal vector P being 
given by (4.5). Henceforth we shall assume that P = 0. By this assumption, C, = 0. 

We will seek a solution of the form (4.2). As in [2, 61, we will use the Lagrange variational 
principle to determine the constants C,. In the case in hand the variational principle takes the 
form 
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i p3 1 NJ, -Ii,)& +(%3 -f2z)WIp.p, x 
s=l -1 

x sin(B, + q)dq = 0 

Assuming that SC, are independent variations, from (5.2) we obtain the infinite system 

:DjkCk = hi (j = 1,2,3,...) 
&=I 

of linear algebraic equations. Here 

(5.2) 

(5.3) 

Djk = pf”+‘i + p;+=i 
[~&(~)~j(~)+Tk(~)bj(~)lsin(eO +VMl 

hj = ZP, 2 “+“i, [~,h)uj(ll)+fi.(ll)~j(11)]sin(eo +&Ill)4 
r-1 

The solvability and convergence of the reduction method for the system (5.3) was proved in 
[71- 

In view of the fact that 0:) = O(1) and o$’ = O(E”‘), we can refine the assumptions concern- 
ing the external load. 

We shall assume that fi,(@ are of order one. We decompose the shear stresses given on the 
spherical parts of the boundary as follows: 

f2, = fJ:j) + f:;2’ (5.4) 

fj;’ = 1 i f2sdq 
2-I ’ 

r;‘;z’ = f2, - f (‘I 2s 

It can be shown that f:;” are of order e”‘. Then fi;” can be of order unity. Thus, we get 

fi, = O(l), f;;’ = O(&, fi!2’ = O(1) (5.5) 

We shall seek the unknown constants A, and Bk in the form 

Aj = Ajo +EHAj* +rAjz+... (5.6) 

Bk = B,o +a&, +E’B,,+... (5.7) 

Substituting (5.6) and (5.7) into (5.3) and taking (5.5) into account, we obtain the following 
systems of infinite linear algebraic equations 

,$pAjo ~7; (i = 1,2,3,4) (5.8) 

Cm,B,, = d,, (n = 1,2,3,...) 
&=I 

(5.9) 

Here 
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Ti = ii p? i [fi,(U~fg~l(U~igj -to Ctg00) - t&ill) + 
s=l -I 

+_&) ldq eXp(e-%Xoi In p,) 

The matrices of system (5.9) are known from the theory of inhomogeneous plates [3]. A 
numerical analysis of various problems has already been carried out a number of times using 
(5.9). 

The problem of determining Aj,, B,, (l= 1, 2, . . .) invariably reduces to inverting the same 
matrices as those for (5.8) and (5.9). 

The homogeneous and inhomogeneous solutions found not only reveal the qualitative 
characteristics of the three-dimensional solution in the theory of inhomogeneous shells, but 
can also serve as an efficient formalism for solving particular boundary-value problems, as well 
as the basis for evaluating simplified theories. 

Note that when G = const and h = const, all the solutions obtained above are exactly the 
same as those for a homogeneous cone [2]. In particular, as was shown in [2], the solution 
corresponding to the eigenvalues z,, = -l/2 is identical with the Mitchell-Neuber solution for a 
cone [5]. 

Remarks. 1. When 8, +O, the solutions defined by (3.4) and (3.6) become solutions for an inhomo- 

geneous cylinder [8]. 

2. The case when 8, = n/2 is singular and corresponds to an inhomogeneous plate of variable thickness 

(this case is not considered in the present paper). 

REFERENCES 

1. GOL’DENVEIZER A. L., The construction of an approximate theory of shells by means of asymptotic integration 
of the equations of the theory of elasticity. Prikl. Mat. Me&h. 27,4,593-608,1%3. 

2. MEKHTIYEV M. F. and USTINOV Yu. A., An asymptotic study of the solution of a problem of the theory of 
elasticity for a hollow cone. Prikf. Mat. Mekh. 35, 6,11C%1115,1971. 

3. VOROVICH I. I., KADOMTSEV I. G. and USTINOV Yu. A., On the theory of plates of non-uniform thickness. 
Izv. Akad. Nauk SSSR, MTT 3,119-129,197s. 

4. USTINOV Yu. A., Some properties of homogeneous solutions for inhomogeneous plates. Do&l. A&ad. Nauk SSSR 
216,4,755-758,1974. 

5. LUR’YE A. I., The Theory of EIarricify . Nauka, Moscow, 1970. 
6. BAZARENKO N. A. and VOROVICH I. I., The asymptotic behaviour of the solution of a problem of the theory of 

elasticity for a thin hollow cylinder of finite length. Prikl. Mat. Mekh. 29,6,1035-1052,1%5. 
7. USTINOV Yu. A. and YUDOVICH V. I., On the completeness of a system of elementary solutions of the 

biharmonic equation in a semi-strip. Prikl. Mat. Me&h. 37, 4,706-714,1973. 
8. USTINOV Yu. A., The axially symmetric stress-strain state of a thin inhomogeneous cylindrical shell. Prikl. Mekh. 

11,7,35-41,1975. 

Translated by T.J.Z. 


